An airing of the Maximum Entropy/KKT method and its use for astrophysics
Abstract
In this paper, after a brief history of the Maximum Entropy Principle (MaxEnt), we will discuss its generalization in an epistemological way with the use of the KKT methodology in discrete systems. For this purpose, we we will also make a brief history of the KKT method and its use. After this exhibition, we will proceed to the joint use of MaxEnt with KKT. This has already been done in some works found in the literature, but in the particular case of Astrophysics it is a new approach from our group, which we believe to be promising.
Downloads
References
ANDREI, A.; COELHO, B.; GUEDES, L.; LYRA, A. 2019, em preparação.
ANTUNES, M. e LYRA, A., O Princípio da Máxima Entropia e o Problema da Razão Insuficiente, Anais do Scientiarum História XI, Rio de Janeiro: UFRJ,2018.
CANU et al., Introduction to optimization with applications in astronomy and astrophysics, em :https://hal.archives-ouvertes.fr/hal-01346134.
JAYNES, E. T, (1957), Phys. Rev. 106, p.620;``Prior Probability'', IEEE Transations On Systems Science and Cybernetics, vol.4 sec.4 N.3 (1968); “Where do we Stand on Maximum Entropy?, Maximum Entropy Formalism Conference, Massachusetts Institute of Technology, May 2-4, (1978); "Notes on Present Status and Future Prospects." In Maximum Entropy and Bayesian Methods, edited by W. T. Grandy and L. H. Schick. Kluwer, Springer, Wyoming, USA (1990).
KUHN, H.W. AND TUCKER, A.W., 1950. Nonlinear programming, In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman, Ed., pp. 481–492. Berkeley; Berkeley Symp. on Math. Statist. and Prob.Proc. Second Berkeley Symp. on Math. Statist. and Prob. (Univ. of Calif. Press, 1951), 481-492 , Nonlinear Programming.
KUHN, HAROLD W. Nonlinear programming: a historical view, Nonlinear programming (Proc. Sympos., New York, 1975) Amer. Math. Soc., Providence, R. I., 1976, pp. 1–26. SIAM-AMS Proc., Vol. IX. MR 0403674,
KARUSH, W. , 1939. Minima of Functions of Several Variables with Inequalities as Side Conditions . Dissertation, Department of Mathematics, University of Chicago. Illinois;
KJELDSEN, T. H., A Contextualized Historical Analysis of the Kuhn–Tucker Theoremin Nonlinear Programming: The Impact of World War II, In: Historia Mathematica 27 (2000), 331–361.
SHANNON, C.E., “The mathematical Theory of Communication“, Bell System Tech. J.27, 379, 623 (1948).
SHIMONY, A., The Status of the Principle of Maximum Entropy, Synthesis, v.63, p-35-53 (1985).
THIÉBAUT et YOUNG (Journ. of the Optical Soc. America A, v34, n.6, p.904 (2017)).
Todos os artigos publicados na Revista Scientiarum Historia recebem a licença Creative Commons - Atribuição 4.0 Internacional (CC BY 4.0).
Todas as publicações subsequentes, completas ou parciais, deverão ser feitas com o reconhecimento, nas citações, da Revista Scientiarum Historia como a editora original do artigo.